Operating System Concepts

Lesson 16

Objectives

Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Methods for Handling Deadlocks

There are three approaches for handling deadlocks.

1.

Ensure that the system will never enter a deadlock state by adopting some
precautionary measures

Allow the system to enter a deadlock state and then recover

Ignore the problem and pretend that deadlocks never occur in the system; used by

most operating systems, including UNIX.

Precautionary Measures

There are two techniques upon employing any one of them would guarantee that system

would-not enter in a deadlock.

1. Deadlock Prevention

2. Deadlock Avoidance

1. Deadlock Prevention

In this technique we somehow make sure that at least one of the four necessary
and sufficient conditions would not occur.
As we know that there is bi-conditional relationship between these conditions and
the deadlock so if a single condition is missing system is prevented from
deadlock.
Now let’s examine these conditions one by one that how to get rid of them and
what will be its possible cost.
1.1 Mutual Exclusion
Just imagine the dramatic situation that mutual exclusion was a necessary
condition for the solution of critical section problem while in this case it is
a candidate condition for the deadlock.
There are two types of resources that are sharable and non-sharable.

Operating System Concepts

1.2

13

For sharable resources there is no need for Mutual Exclusion while for
non-sharable resources this condition is unavoidable.

Hold and wait

In order to avoid the Hold and wait condition we have to do the following.
Solution Must guarantee that whenever a process requests a resource, it
does not hold any other resources or if a process is already holding a
resource it cannot request for another.

So it requires process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none.

Problems

Starvation: The probability that all required resources of a process will be
available is low, so process may be in an indefinite waiting state that is
starvation.

Low resource utilization: Say for the instance that system is able to
allocate all the required resources to the process simultaneously, then the
process may be using anyone of them and rest of resources may not be in
utilization this will cause poor resource utilization.

No Preemption

Solution

e |If a process that is holding some resources requests another
resource that can be immediately allocated to it, allocate it.

e |If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

e Preempted resources are added to the list of resources for which
the process is waiting.

e Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

Problem

Almost same problems may occur as it was in previous case.

Operating System Concepts

1.4 Circular wait
Impose a total ordering of all resource types, and require that each process
requests resources in an increasing order of enumeration. This will
guarantee that circular wait wouldn’t occur.
Deadlock Avoidance
Deadlock avoidance incorporates all a priori steps taken before execution of
processes such that that sequence of processes may not produce a deadlock. It
requires that the system has some additional a priori information available. Like,
e Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need.
e The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition.
e Resource-allocation state is defined by the number of available and

allocated resources, and the maximum demands of the processes.

Safe State

When a process requests an available resource, system must decide if immediate
allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all processes.

Sequence <P1, P2, ..., Pn> is safe if for each Pi, the resources that Pi can still
request can be satisfied by currently available resources + resources held by all
the Pj, with j<I.

If Pi resource needs are not immediately available, then Pi can wait until all Pj
have finished.

When Pj is finished, Pi can obtain needed resources, execute, return allocated
resources, and terminate.

When Pi terminates, Pi+1 can obtain its needed resources, and so on.

If system is in safe state then there is no possibility of deadlock
If system is in unsafe state there may be a deadlock
A safe sequence guarantees a safe state

Deadlock avoidance is to make sure that system would never be in unsafe state

Operating System Concepts

unsafe

deadlock

safe

Safe and unsafe states
Avoidance Algorithm
a. RAG Algorithm (Single Instance per resource type)
Resource Allocation Graph is helpful in determining that when a resource/s should be
allocated to which process. This can be done by introducing a new edge in resource
allocation graph namely Claim Edge.
e Claim edge: Pi--->Rj indicated that process Pj may request resource Rj;
represented by a dashed line.
e Claim edge converts to request edge when a process requests a resource.
e When a resource is released by a process, assignment edge reconverts to a claim
edge.
e Resources must be claimed a priori in the system
e System can a priory decide which process to give the resource. In following
example if we allocate R2 to P2 then there is a deadlock while if we allocate to P1
there is no deadlock.

R, R

@] @®. /&J
R re 'y

Operating System Concepts

b. Banker’s algorithm (Multiple instances per resource type)

Multiple instances.

Each process must a priori claim maximum use.

When a process requests a resource it may have to wait.

When a process gets all its resources it must return them in a finite amount

of time.

Example of Banker’s Algorithm

B 5 processes P,through P,; 3 resource types A

(10 instances),

B (5instances, and C (7 instances).

B Snapshot at time T:
Allocation
ABC
010
200
302
211
002

B0, ual

Max
ABC
753
322

902
222
433

Available
ABC
332

B The content of the mattix. Need is defined to be Max —

Allocation.
Need
ABC
P, 743
222
P, €600
(2
P, 431

B The system is in a safe state since the sequence < P,, P;, P,,

P,. P,> satisfies safety criteria.

B Check that Request < Available (that is, (1,0.2) = (3,3,2) =

true.

Allocation Need Available
ABC ABC

P, 010 743
P, 302 020
P, 301 600
P, 211 011
P, 002 431

ABC

230

B Executing safety algorithm shows that sequence <P,, P, P.,
F,, P,> satisfies safety requirement.

B Can request for (3,3,0) by P, be granted?
m Can request for (0,2,0) by P, be granted? =,

